Package: DataExplorer 0.8.3.9000
DataExplorer: Automate Data Exploration and Treatment
Automated data exploration process for analytic tasks and predictive modeling, so that users could focus on understanding data and extracting insights. The package scans and analyzes each variable, and visualizes them with typical graphical techniques. Common data processing methods are also available to treat and format data.
Authors:
DataExplorer_0.8.3.9000.tar.gz
DataExplorer_0.8.3.9000.zip(r-4.5)DataExplorer_0.8.3.9000.zip(r-4.4)DataExplorer_0.8.3.9000.zip(r-4.3)
DataExplorer_0.8.3.9000.tgz(r-4.4-any)DataExplorer_0.8.3.9000.tgz(r-4.3-any)
DataExplorer_0.8.3.9000.tar.gz(r-4.5-noble)DataExplorer_0.8.3.9000.tar.gz(r-4.4-noble)
DataExplorer_0.8.3.9000.tgz(r-4.4-emscripten)DataExplorer_0.8.3.9000.tgz(r-4.3-emscripten)
DataExplorer.pdf |DataExplorer.html✨
DataExplorer/json (API)
NEWS
# Install 'DataExplorer' in R: |
install.packages('DataExplorer', repos = c('https://boxuancui.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/boxuancui/dataexplorer/issues
data-analysisdata-explorationdata-scienceedavisualization
Last updated 10 months agofrom:b932420640. Checks:OK: 5 NOTE: 2. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 21 2024 |
R-4.5-win | NOTE | Nov 21 2024 |
R-4.5-linux | NOTE | Nov 21 2024 |
R-4.4-win | OK | Nov 21 2024 |
R-4.4-mac | OK | Nov 21 2024 |
R-4.3-win | OK | Nov 21 2024 |
R-4.3-mac | OK | Nov 21 2024 |
Exports:configure_reportcreate_reportdrop_columnsdummifygroup_categoryintroduceplot_barplot_boxplotplot_correlationplot_densityplot_histogramplot_introplot_missingplot_prcompplot_qqplot_scatterplotplot_strplotDataExplorerprofile_missingset_missingsplit_columnsupdate_columns
Dependencies:base64encbslibcachemclicolorspacecpp11data.tabledigestevaluatefansifarverfastmapfontawesomefsggplot2gluegridExtragtablehighrhtmltoolshtmlwidgetsigraphisobandjquerylibjsonliteknitrlabelinglatticelifecyclemagrittrMASSMatrixmemoisemgcvmimemunsellnetworkD3nlmepillarpkgconfigplyrR6rappdirsRColorBrewerRcppreshape2rlangrmarkdownsassscalesstringistringrtibbletinytexutf8vctrsviridisLitewithrxfunyaml
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Configure report template | configure_report |
Create report | create_report |
Drop selected variables | drop_columns |
Dummify discrete features to binary columns | dummify |
Group categories for discrete features | group_category |
Describe basic information | introduce |
Plot bar chart | plot_bar |
Create boxplot for continuous features | plot_boxplot |
Create correlation heatmap for discrete features | plot_correlation |
Plot density estimates | plot_density |
Plot histogram | plot_histogram |
Plot introduction | plot_intro |
Plot missing value profile | plot_missing |
Visualize principal component analysis | plot_prcomp |
Plot QQ plot | plot_qq |
Create scatterplot for all features | plot_scatterplot |
Visualize data structure | plot_str |
Profile missing values | profile_missing |
Set all missing values to indicated value | set_missing |
Split data into discrete and continuous parts | split_columns |
Update variable types or values | update_columns |